DELEUZE / KANT
Cours Vincennes : synthèse et temps - 14/03/1978
Télécharger ce cours en :     pdf (disponible)     rtf (disponible)

On fait un retour à Kant. Que ce soit pour vous l'occasion de feuilleter, de lire ou de relire la Critique de la raison pure. Il n'y a pas de doute que c'est un événement formidable dans la philosophie qui arrive avec cette idée de la critique. Quand on y entre, nous, ou quand on y rentre, il y avait très longtemps que j'en avais plus lu et j'en ai relu pour vous, c'est quand même une philosophie complètement étouffante. C'est une atmosphère excessive, mais si on tient bon, et l'important avant tout ce n'est pas de comprendre, l'important c'est de prendre le rythme de cet homme là, de cet écrivain là, de ce philosophe là. Si on tient bon, toute cette brume du nord qui nous tombe dessus se dissipe, et là dessous il y a une étonnante architecture. Quand je vous disais que un grand philosophe c'est quand même quelqu'un qui invente des concepts, dans le cas de Kant, dans cette brume, fonctionne une espèce de machine de penser, une espèce de création de concepts qui est proprement effrayante. On peut essayer de dire que l'ensemble des créations et des nouveautés que le kantisme apportera dans la philosophie tourne autour d'un certain problème du temps et d'une conception tout à fait nouvelle du temps, une conception dont on peut dire que lorsque Kant l'élabore elle va être décisive pour tout ce qui s'est passé ensuite, c'est à dire essayer de déterminer une espèce de conscience moderne du temps par opposition à une conscience classique ou à une conscience antique du temps.
Pourquoi est-ce que c'est Kant qui a créé les concepts philosophiques de cette nouvelle conscience du temps, rendant possible son expression philosophique, ça ne nous regarde pas ou en tous cas ça ne m'intéresse pas, mais ce que je voudrais dire, c'est que c'est bien cette espèce de conscience du temps qui reçoit un statut philosophique avec Kant, et qui est complètement nouvelle. Je procéderai par numéros parce que j'ai toujours dans l'idée qu'à chaque numéro correspond un type de concept, et, encore une fois, je serais content si vous m'accordez à la fin de ces leçons qu'un philosophe c'est bien ça : que c'est non moins créateur qu'un peintre ou qu'un musicien, simplement il crée dans un domaine déterminable comme étant la création des concepts.
Premièrement, qu'est-ce que Kant entend par a priori et qu'il oppose à a posteriori? C'est des mots courants. Tantôt il faut inventer des mots nouveaux et ça arrivera à Kant lorsqu'il créera la notion de transcendantal, qui est une notion très étrange, sujet transcendantal… sans doute on me dira que le mot existait avant, mais il était rarement employé et il n'avait aucune différence avec le mot ordinaire transcendant, tandis que Kant lui donne un sens très spécial: le sujet transcendantal, il a presque créé un mot… dans le cas de a priori et a posteriori il emprunte un mot, mais il renouvelle complètement le sens.
A priori, en première détermination, ça veut dire: indépendant de l'expérience, qui ne dépend pas de l'expérience. Par opposition à a posteriori qui veut dire donné ou donable dans l'expérience.
Qu'est-ce qui est a priori ? Vous remarquez que je ne me demande pas: est-ce qu'il y a de l'a priori, à savoir est-ce qu'il y a des choses indépendantes de l'expérience. La question de l'existence est seconde, il faut savoir d'abord ce que c'est qu'une chose pour pouvoir dire et répondre à la question de l'existence: est-ce que ça existe ou pas? Je dis que s’il y en a, qu'est-ce que c'est quelque chose qui serait indépendant de l'expérience? Donc non donable dans l'expérience ? Rien de compliqué jusque là, Kant reprend tout cela très vite, l'a priori en ce sens c'est l'universel et le nécessaire. Tout ce qui est nécessaire et universel est dit a priori. Pourquoi? Ça répond bien à la première condition de l'a priori: non donné dans l'expérience parce que, par définition, l'expérience ne me donne que du particulier et du contingent. Les expressions d'universel et de nécessaire c'est toujours nécessairement, ou bien certains emplois du futur, ou des expressions du type «chaque fois que»– chaque fois que je mettrai de l'eau à 100° elle bouillira. Les philosophes l'ont dit depuis très longtemps: il y a quelque chose là-dedans qui n'est pas donné dans l'expérience –, c'est quoi? C'est les expressions: «toujours», «nécessairement» ou même ce futur. Ce que l'expérience m'a donné c'est, à la rigueur, chaque fois où effectivement j'ai mis de l'eau à 100°, elle a bouilli, mais la formule «l'eau boue nécessairement à 100°», le nécessairement n'est pas objet d'expérience. De même si je dis «tous les objets de l'expérience», est-ce que j'ai le droit de le dire? On ne sait même pas si «tous les objets de l'expérience», ce n'est pas un non sens. A supposer que ce ne soit pas un non sens, «tous les objets de l'expérience» ne sont pas donnés dans une expérience, pour la simple raison que l'expérience elle est[???????] Donc vous pouvez toujours faire une sommation, une addition des objets que vous avez expérimentés, mais cette somme est indéfinie.
Donc l'universel et le nécessaire par définition ne sont pas donables dans une expérience puisqu'une expérience est toujours particulière et contingente. Donc ça nous fait une deuxième détermination de l'a priori. L'a priori, c'était d'abord ce qui est indépendant de l'expérience ; en deuxième point, c'est ce qui est universel et nécessaire.
Troisième point: comment est-ce qu'on peut le définir, cet universel et ce nécessaire? Il y a déjà quelque chose de très très délicat. Dire que quelque chose est indépendant de l'expérience ça n'empêche pas que peut-être ce quelque chose s'applique à l'expérience et ne s'applique qu'à elle. La question de l'application est tout à fait différente. Lorsque je dis «l'eau rentrera toujours en ébullition à 100°», je ne sais pas d'où me vient ce «toujours», puisque ce n'est pas l'expérience qui me le donne, je ne sais pas d'où me vient cette idée de nécessité puisque ce n'est pas l'expérience qui me la donne ; mais ça n'empêche pas que «toujours» s'applique à l'eau, 100°, ébullition, toutes choses qui sont données par l'expérience. Donc supposons que l'a priori soit lui-même indépendant de l'expérience mais s'applique à des objets de l'expérience. En d'autres termes, l'universel, le nécessaire se disent d'objets de l'expérience; peut-être se disent-ils aussi d'autres choses, mais ils se disent d'objets de l'expérience. Qu'est-ce qui est universel et nécessaire? Ce sera quoi, ces universaux et ces nécessaires qui peuvent se dire d'objets de l'expérience? Intervient ici une notion qui est célèbre en philosophie, c'est celle de catégorie. Un certain nombre de philosophes ont même fait ou proposé ce qu'on appelle des tables de catégories. Il y a chez Aristote une table des catégories célèbre. Chez Kant, qui n'est pas sans avoir subi une forte influence d'Aristote, il y aura une autre table des catégories. Qu'est-ce que c'est une catégorie? Une catégorie ce n'est pas n'importe quoi, en philosophie, c'est aussi rigoureux qu'une notion scientifique dans un autre domaine. Ce qu'on appelle une catégorie, c'est un prédicat – ou attribut si vous voulez – universel. C'est-à-dire un prédicat qui s'attribue, ou se prédique, ou se dit de tout objet. C'est bizarre cette notion «tout objet». Je dis «la rose est rouge». Qu'est-ce que c'est que ça? C'est pas compliqué, «la rose est rouge», c'est un rapport entre deux concepts, la rose et le rouge, et si je dis qu'est-ce qui est universel ou qu'est-ce qui est nécessaire là-dedans, je peux répondre: rien. Tous les objets ne sont pas des roses, toutes les roses ne sont pas rouges. Tous les rouges ne sont pas couleur de roses. Je dirais qu'il y a une expérience de la rose rouge et que cette expérience est particulière, contingente, a posteriori comme toute expérience. Comparez ce jugement «la rose est rouge» à cet autre jugement «l'objet a une cause» ou même «la rose a une cause».
Je vois bien tout de suite une différence, c'est que le concept de rose définit ce qu'on appellera une classe en tant que concept a posteriori ; le concept de rose définit une classe ou un ensemble. Rouge est une propriété d'un sous-ensemble de cet ensemble, le sous-ensemble des roses rouges. Je peux définir un ensemble en fonction de ce qu'il exclut et en rapport avec ce qu'il exclut: tout ce qui n'est pas rose. L'ensemble des roses est taillé dans un ensemble plus vaste qui est celui des fleurs, et on distinguera l'ensemble des roses du reste, à savoir toutes les fleurs qui ne sont pas roses.
Lorsque je dis «tout objet a une cause», est-ce que je ne suis pas dans un tout autre domaine? Évidemment si, je suis complètement dans un domaine différent parce que avoir une cause c'est un prédicat universel qui s'applique à tous les objets de l'expérience possible, au point que je n'ai même pas besoin – ou je crois que, mais ça ne change rien parce que «je crois» deviendra un acte qu'il faudra analyser –, je crois que si un objet inconnu surgit dans l'expérience devant mes yeux, cet objet ne serait pas un objet s'il n'avait pas une cause. Avoir une cause ou être causé est un prédicat d'un tout autre type que le prédicat «rouge». Pourquoi? Parce que le prédicat «être causé», au point qu'on peut se demander, réflexion faite, est-ce que c'est bien un prédicat ou est-ce que c'est autre chose? Le prédicat «être causé» est prédicat de tout objet de l'expérience possible, au point qu'il ne va pas définir un ensemble ou un sous ensemble au sein de l'expérience puisqu'il est strictement coextensif à la totalité de l'expérience possible.
Bien plus, il faut renverser. Quand je disais que la totalité de l'expérience possible ça n'a peut-être pas de sens, maintenant on a la réponse: la totalité de l'expérience possible ça n'a aucun sens en soi, mais c'est justement dans la mesure où il y a des prédicats qui s'attribuent à tous les objets possibles, donc qui sont plus que des prédicats, et c'est cela que Kant va appeler des conditions, ce sont des conditions de l'expérience possible, c'est donc par la notion de condition de l'expérience que l'idée d'un tout de l'expérience possible va prendre un sens. Il y a un tout de l'expérience possible puisque il y a des prédicats ou des pseudo-prédicats qui s'attribuent à tous les objets possibles et ces prédicats c'est précisément ce qu'on appelle des catégories. Je cite quelques exemples de catégories selon Kant: unité, pluralité, totalité (chez Kant elles vont par trois).
Réalité, négation, limitation.
Substance, cause, réciprocité.
Je m'en tiens là. En quoi ce sont des catégories et non pas des prédicats du type rouge, vert, etc. ? Ce sont des catégories ou des conditions de l'expérience possible pour la simple raison que si tout objet n'est objet que dans la mesure où il est conçu comme un, mais aussi comme multiple, ayant des parties d'unité d'une multiplicité, et comme par là formant une totalité, tout objet quel qu'il soit a une réalité. D'autre part, il exclut ce qu'il n'est pas: négation ; et par là même il a des limites: limitation. Tout objet quel qu'il soit est substance, tout objet quel qu'il soit a une cause et est lui-même cause d'autres choses.
Ça suffit pour dire que ma notion d'objet est faite de telle manière que si je rencontrais un quelque chose qui ne se laisse pas attribue les catégories, je dirais que ce n'est pas un objet. Donc voilà comme dernière détermination de l'a priori, ce sont les conditions de l'expérience possible, à savoir les prédicats universels par opposition aux prédicats empiriques ou aux prédicats a posteriori.
Je pourrais définir de la manière la plus simple les catégories comme étant les prédicats de l'objet quelconque. Donc vous pouvez vous-mêmes faire votre liste de catégories d'après votre humeur, d'après votre caractère… – ce qui serait bien, c'est de voir si tout le monde tombe sur la même liste de catégories. De toute manière vous n'avez pas le droit de tricher avec le mot. Faire votre liste des catégories, c'est vous demander à vous-mêmes, qu'est-ce qui pour moi est prédicat de l'objet quelconque ? J'en ai donné déjà une certaine liste, avec neuf catégories. En fait, pour Kant, il y en a douze, mais j'en laisse trois de côté pour plus tard; vous voyez: unité, pluralité, totalité, affirmation, négation et limitation, substance, cause, réciprocité ou communauté.
Pour en finir avec ce premier point, je dis que les catégories, en tant que prédicats de l'objet quelconque, sont a priori, et elles sont conditions de l'expérience possible. Comprenez que c'est par elles que la notion d'expérience possible prend un sens.
A la question: est-ce que le tout de l'expérience possible veut dire quelque chose? Aucun sens si on reste dans une démarche a posteriori, parce que dans une démarche a posteriori je suis amené à faire une addition: les roses, les autres fleurs que les roses, les végétaux qui ne sont pas fleurs, les animaux, etc. Je pourrais aller à l'infini comme ça et rien ne me dis que j'ai un tout de l'expérience possible. Au contraire, l'expérience est fondamentalement morcelée, elle s'oppose à une totalisation. Si Kant lance cette notion très très nouvelle d'une totalité de l'expérience possible, c'est parce qu'il est susceptible de définir, de dire: oui, il y a un niveau où le tout de l'expérience possible prend un sens, c'est précisément parce qu'il y a des prédicats universels qui s'attribuent à toutes choses, c'est-à-dire qui s'attribuent à l'objet quelconque. Donc c'est a priori que sera fondée la notion de totalité de l'expérience possible. Est-ce qu'il y a autre chose que les catégories pour être a priori, c'est-à-dire universel et nécessaire? La réponse c'est oui, et cette autre chose, c'est l'espace et le temps. En effet, tout objet est dans l'espace et dans le temps, ou au moins dans le temps. Mais vous me direz tout de suite : bon très bien, pourquoi ne pas en faire une catégorie, pourquoi ne pas ajouter l'espace et le temps comme deux catégories? En effet l'espace et le temps sont aussi, semble-t-il, des prédicats. Évidemment, Kant a les plus sérieuses raisons pour ne pas vouloir – et il tiendra beaucoup à – distinguer les catégories d'une part, et d'autre part l'espace et le temps. Il y aura donc deux sortes d'éléments a priori: les catégories, et l'espace et le temps. Pourquoi est-ce qu'il ne veut pas que l'espace et le temps fassent partie des catégories? Je donne très vite une raison qui deviendra claire par la suite: c'est que les catégories en tant que prédicats de l'expérience possible sont des concepts, alors que Kant tient fondamentalement, ce sont des représentations a priori, des représentations ou des concepts a priori, tandis que l'espace et le temps ce sont des présentations. Là il y a aussi quelque chose de très nouveau en philosophie, ça va être l'effort de Kant pour distinguer la présentation et la représentation. Donc il y aurait dans l'a priori deux sortes d'éléments.
Mon deuxième point, c'est l'importance de Kant à un autre niveau, à savoir la notion de phénomène, et ça aussi c'est très important. Là Kant opère une espèce de transformation essentielle d'un mot qui était employé couramment jusque là par la philosophie. Jusque là les philosophes parlaient de phénomène, pour distinguer quoi? En très gros, on peut dire que phénomène c'était quelque chose comme l'apparence. Une apparence. Le sensible, l'a posteriori, ce qui était donné dans l'expérience avait le statut de phénomène ou d'apparence, et l'apparence sensible s'opposait à l'essence intelligible. L'essence intelligible c'était aussi bien la chose telle qu'elle est en soi, c'était la chose en elle-même, la chose en soi ou la chose en tant que pensée; la chose en tant que pensée, comme phénomène, c'est un mot grec qui désigne précisément l'apparence ou on ne sait pas encore quoi, la chose en tant que pensée en grec c'était le noumène, ce qui veut dire le «pensé». Donc je peux dire que toute la philosophie classique à partir de Platon semblait se développer dans le cadre d'une dualité entre les apparences sensibles et les essences intelligibles.
Vous voyez bien que ça implique déjà un certain statut du sujet. Si je dis qu'il y a des apparences et qu'il y a des essences, qui sont en gros comme le sensible et l'intelligible, ça implique une certaine position du sujet – du sujet connaissant –, à savoir: la notion même d'apparence renvoie à une défectuosité fondamentale dans le sujet. Une défectuosité fondamentale, à savoir: l'apparence, c'est finalement la chose telle qu'elle m'apparaît en vertu de ma constitution subjective qui la déforme. Exemple fameux d'apparence: le bâton m'apparaît brisé dans l'eau. C'est ce qu'on appelle le riche domaine de l'illusion des sens. Si bien que pour atteindre la chose en soi il faudra bien que le sujet surmonte cette espèce d'infirmité constitutive qui le fait vivre parmi les apparences. C'est le thème de Platon: sortir des apparences pour rejoindre les essences.
Avec Kant, c'est comme un coup de tonnerre – après on pourra toujours faire le malin, et même il faudra faire le malin –, avec Kant surgit une compréhension radicalement nouvelle de la notion de phénomène. A savoir le phénomène ne sera plus du tout l'apparence. La différence est fondamentale, il suffisait d'avoir cette idée pour que la philosophie entre dans un nouvel élément, à savoir je crois que s'il y a un fondateur de la phénoménologie, c'est Kant. Il y a phénoménologie à partir du moment où le phénomène n'est plus défini comme apparence mais comme apparition. La différence est énorme parce que quand je dis le mot apparition je ne dis plus du tout apparence, je n'oppose plus du tout à essence. L'apparition, c'est ce qui apparaît en tant que cela apparaît. Un point c'est tout. Je ne me demande pas s’il y a quelque chose derrière, je ne me demande pas si c'est faux ou pas faux. L'apparition n'est pas du tout prise dans le couple d'oppositions, dans la distinction binaire où est l'apparence, distinction avec l'essence.
La phénoménologie se prétend science rigoureuse de l'apparition en tant que telle, à savoir se pose la question: qu'en est-il du fait d'apparaître? C'est le contraire d'une discipline des apparences. Apparition, ça renvoie à quoi? L'apparence c'est quelque chose qui renvoie à essence dans un rapport de disjonction, dans un rapport disjonctif, à savoir ou bien c'est de l'apparence, ou bien c'est de l'essence. L'apparition c'est très différent, c'est quelque chose qui renvoie aux conditions de ce qui apparaît. A la lettre le paysage conceptuel a complètement changé, le problème n'est absolument plus le même, le problème est devenu phénoménologique. Au couple disjonctif apparence/essence, Kant va substituer le couple conjonctif ce qui apparaît – conditions de l'apparition. Tout est nouveau là-dedans. Pour rendre les choses un peu plus modernes, je dirais aussi bien: au couple disjonctif apparence/essence, Kant est le premier qui substitue le couple conjonctif apparition/sens, sens de l'apparition, signification de l'apparition. Il n'y a plus l'essence derrière l'apparence, il y a le sens ou le non sens de ce qui apparaît. Accordez-moi juste que même si ce que je dis reste très verbal, c'est une atmosphère de pensée radicalement nouvelle, au point que je peux dire qu'à cet égard on est tous kantiens.
C'est évident que la pensée, à cette époque là, changeait d'éléments. On avait longtemps pensé en termes qui ne venaient pas du christianisme mais qui se conciliaient très bien avec le christianisme – la distinction apparence/essence –, et vers la fin du XVIIIe siècle, sans doute préparé par toutes sortes de mouvements, se fait un changement radical: à toute la dualité apparence/essence qui implique en un sens un monde sensible dégradé, qui implique même au besoin le péché originel, se substitue un type de pensée radicalement nouveau: quelque chose apparaît, dites-moi quel est son sens ou – et ça revient au même –, dites-moi quelle est sa condition.
Lorsque Freud surgira et dira qu'il y a certains phénomènes qui apparaissent dans le champ de la conscience, à quoi renvoient ces phénomènes, Freud est kantien. En quel sens? En un sens à la fois très général mais aussi très rigoureux, à savoir que, comme tous les gens de son époque et depuis Kant, on pense comme spontanément en termes du rapport apparition/conditions de l'apparition, ou apparition/sens de ce qui apparaît, et non plus en termes de apparence/essence. Si vous ne voyez pas l'énormité du renversement, admirez que le sujet, dans mon second couple, le sujet n'a pas du tout la même situation. Dans le couple disjonctif apparence/essence, le sujet est condamné immédiatement à saisir des apparences en vertu d'une fragilité qui lui est consubstantielle, et il lui faut toute une méthode, il lui faut tout un effort pour sortir des apparences et atteindre à l'essence. Dans l'autre cas, en quoi le sujet prend-il une valeur tout à fait différente? C'est lorsque je dis que toute apparition renvoie à des conditions d'apparaître de l'apparition, je dis par là même que ces conditions appartiennent à l'être auquel l'apparition apparaît, en d'autres termes le sujet est constituant – et comprenez bien, sinon c'est le contre sens radical –, le sujet est constituant non pas de l'apparition, il n'est pas constituant de ce qui lui apparaît, mais il est constituant des conditions sous lesquelles ce qui lui apparaît lui apparaît.
Je veux dire que la substitution du couple conjonctif phénomènes-conditions, ou apparitions-conditions au vieux couple disjonctif essence-apparence assure une promotion du sujet en tant que le sujet constitue les conditions même de l'apparition, au lieu de constituer et d'être responsable des limitations de l'apparence, ou des illusions de l'apparence. Il y a bien un sujet, dira Kant, qui est subordonné aux apparences et qui tombe dans les illusions sensibles; on l'appellera le sujet empirique, mais il y a un autre sujet qui évidemment ni vous ni moi, qui surtout ne se réduit à aucun sujet empirique, qui sera dès lors nommé sujet transcendantal car il est l'unité de toutes les conditions sous lesquelles quelque chose apparaît, apparaît à qui? Apparaît à chacun des sujets empiriques. C'est beau déjà comme système de notions. J'espère que vous sentez à quel point ça se monte : c'est une formidable machine.
Pour terminer ce second point, je fais deux corrections: Kant est à la charnière de quelque chose, alors c'est plus compliqué que je ne le dis, parce que la vieille différence essence-apparence, il en garde quelque chose, et en effet il dira tout le temps: ne confondez pas le phénomène avec la chose en soi ; la chose en soi, c'est le pur noumène, c'est-à-dire que c'est ce qui ne peut être que pensé, tandis que le phénomène, c'est ce qui est donné dans l'expérience sensible. Donc il maintient la dualité disjonctive phénomène/chose en soi – noumène. C'est la dualité du couple apparence/essence. Mais il s'en sort et il est déjà dans une autre pensée pour une raison très simple car il dit que la chose en soi, elle est par nature (ou le noumène, la chose en soi, peut être pensée, elle est donc noumène), mais elle ne peut pas être connue. Donc si elle peut être déterminée, c'est un tout autre point de vue que celui de la connaissance; donc on ne s'en occupe pas ou du moins on s'en occupera dans des conditions très spéciales.
Ce qui compte du point de vue de la connaissance et de toute connaissance possible, c'est l'autre couple, apparition-conditions de l'apparaître, conditions du fait d'apparaître.
Encore une fois si je résume ce renversement, c'est celui qui consiste à substituer à apparence-essence, apparition-conditions ou apparition-sens de l'apparition.
Si vous me demandez ce que c'est que ces conditions d'apparition, heureusement on a avancé parce que notre premier point y a répondu, les conditions de l'apparition, c'est-à-dire les conditions du phénomène en tant que le phénomène est ce qui apparaît, on ne cherchera pas une essence derrière le phénomène, on cherchera la condition de son apparition, et bien les conditions de son apparition c'est, d'une part les catégories, d'autre part l'espace et le temps. Tout ce qui apparaît apparaît sous les conditions de l'espace et du temps, et sous les conditions des catégories. Par là même l'espace et le temps d'une part, d'autre part les catégories, sont les formes de toute expérience possible et elles appartiennent non pas aux choses telles qu'elles sont en soi, mais en tant que formes de tout phénomène, en tant que formes de toute apparition, l'espace et le temps d'une part, les catégories d'autre part sont les dimensions du sujet transcendantal.
Le temps est déjà là complètement. Est-ce qu'il y a des questions?

Richard Pinhas : Comment est distribuée la différence entre sujet transcendantal et sujet empirique? En quoi c'est très différent du domaine de l'être?

Gilles Deleuze : Forcément il a besoin d'une autre notion. On repart de l'idée: phénomène égal apparition. Le phénomène, ce n'est pas l'apparence derrière laquelle il y aurait une essence, c'est ce qui apparaît en tant que cela apparaît. J'ajoute que cela apparaît à quelqu'un – toute expérience est donnée à quelqu'un. Toute expérience est rapportée à un sujet, sujet qui peut être déterminé dans l'espace et dans le temps. C'est ici-maintenant que je mets ma petite casserole à bouillir et que j'allume le feu. Je dirais que toute apparition apparaît à un sujet empirique ou à un moi empirique. Mais toute apparition renvoie non pas à une essence derrière elle, mais à des conditions qui conditionnent son apparaître même. Les conditions de l'apparition – ce sont donc des formes puisque les apparitions apparaissent dans ces formes, ou sous ces formes –, les conditions de l'apparition, c'est l'espace et le temps et les catégories. A savoir l'espace et le temps sont les formes de présentation de ce qui apparaît, les catégories sont les formes de représentation de ce qui apparaît.
Par là même si l'apparition présuppose des conditions qui ne sont pas comme des essences objectives derrière elle, mais qui sont comme des conditions de son apparition à un moi empirique quelconque, nous n'avons plus le choix déjà: les conditions formelles de toute apparition doivent être déterminées comme les dimensions d'un sujet qui conditionnent l'apparaître de l'apparition à un moi empirique, ce sujet ne peut pas lui-même être un moi empirique, ce sera un sujet universel et nécessaire. C'est pour ce sujet que Kant éprouve le besoin de forger ou d'engrosser un mot qui n'avait qu'un emploi théologique très restreint jusque là, donc le besoin d'inventer la notion de transcendantal, le sujet transcendantal étant l'instance à laquelle se rapportent les conditions de toute apparition, tandis que l'apparition elle-même apparaît à des sujets empiriques. Ça ne vous dit pas encore bien ce que c'est que le sujet transcendantal – il faut que vous attendiez parce que ce sera tellement pris dans le problème du temps.
Il faut que tout d'un coup un petit truc devienne concret – il ne faut pas exiger un concret continu. Il y a le concret et l'opposé du concret, le vrai opposé du concret ce n'est pas l'abstrait, c'est le discret. La discrétion, c'est le moment de la pensée. Mon but, c'est d'arriver à une conception fabuleuse du temps.

Comptesse: intervention inaudible.

Gilles Deleuze : La synthèse a priori, c'était mon troisième point. Il faut bien commencer par un bout. Si j'avais commencé par là, il m'aurait fallu une tout autre organisation. Simplement il me semble que dans tout ce que j'ai dit, je n'ai pas eu besoin de supposer les jugements synthétiques.
Troisième point: qu'est-ce qu'une synthèse pour Kant?
Il est courant de distinguer deux types de jugements. Les jugements qu'on appelle analytiques et les jugements qu'on appelle synthétiques. Par définition, on appelle jugement analytique un jugement qui énonce un prédicat qui est déjà contenu dans le sujet, à savoir il y aura une relation analytique entre deux concepts lorsque l'un de ces concepts sera contenu dans l'autre. Exemple de jugement analytique: A est A – c'est le principe d'identité. Lorsque je dis «A est A» je ne sors pas du concept A. Je prédique A de lui-même, j'attribue A à lui-même, je ne risque pas de me tromper. «Le bleu est bleu», vous me direz que ça ne va pas loin, c'est à voir… parce que quand je dis «les corps sont étendus» qu'est-ce que c'est? On a envie de répondre que c'est un jugement analytique. Pourquoi? Parce que je n'ai pas pu penser le concept «corps» - il ne s'agit pas de chose – sans y mettre déjà le concept d'étendu –, donc quand je dis «les corps sont étendus», je formule un jugement analytique. Je crois que Kant dirait quelque chose de très malicieux qui est que: d'accord, tous les corps sont étendus, c'est un jugement analytique, en revanche «tous les phénomènes apparaissent dans l'espace ou dans l'étendu» c'est un jugement synthétique parce que si il est vrai que le concept «étendu» est dans le concept «corps», en revanche le concept «étendu» n'est pas dans le concept «phénomène», ni le concept «corps» n'est dans le concept «phénomène».
Voilà : supposons que «tous les corps sont étendus» ce soit un jugement analytique. Au moins on est sûr d'une chose, c'est qu'un jugement analytique ça ne sert peut-être à rien mais c'est vrai. «A est A» c'est vrai, personne n'a jamais nié «A est A». Dans la contradiction dialectique à la manière de Hegel on ne dit pas «A est non A», on dit «A n'est pas non A», mais que simplement la chose comprend dans son être ce non être de ce qu'elle n'est pas. Donc on prend au sérieux la formule «A n'est pas non A» en disant que l'être de la chose est inséparable de la négation de la négation (n'est pas… n'est pas), mais on ne nie pas du tout le principe d'identité. Dans l'expérience on a des jugements synthétiques, c'est même comme ça qu'on connaît les choses. Lorsque je dis «ah tiens, la rose est rouge», c'est une rencontre. «Rouge», à première vue ce n'est pas contenu dans le concept de rose, la preuve c'est qu'il y a des roses qui ne sont pas rouges. Vous me direz que c'est idiot parce que «rouge», est-ce que ce n'est pas contenu dans le concept de cette rose-ci? Ça se complique parce qu’est-ce qu'il y a un concept de cette rose-ci, est-ce qu'il y a un concept du singulier? On laisse ça de côté. On dira en très gros que, apparemment, «la rose est rouge» c'est un jugement synthétique.
Vous voyez comment ça se distribue. Tous les jugements analytiques sont a priori, c'est indépendamment de l'expérience que je peux dire qu'une chose est ce qu'elle est. «A est A» est un jugement a priori. Toujours à première vue, le jugement synthétique semble par nature être la combinaison de deux concepts hétérogènes, la rose et le rouge, il établit un lien ou une synthèse entre deux concepts hétérogènes et est par là même a posteriori. La forme de ce jugement, c'est «A est B». D'une certaine manière – je le dis très vite –, la philosophie classique avant Kant, tout comme je le disais tout à l'heure, elle est prise dans le couple dualiste, dans la dualité disjonctive essence/apparence ; la philosophie classique était prise, au moins en apparence, dans une certaine dualité: ou bien un jugement est a priori et il est analytique, ou bien il est synthétique et il est empirique ou a posteriori.
Ça devenait très compliqué de savoir à quelles conditions un jugement empirique pouvait être vrai. Il y a une tentative célèbre et très prodigieuse, c'est celle de Leibniz – avant Kant. Pour fonder la notion de vérité, il est amené à tenter de montrer que tous les jugements sont analytiques, simplement que nous nous ne le savons pas, que nous croyons à l'existence de jugements synthétiques parce que nous ne poussons jamais l'analyse assez loin, c'est-à-dire jusqu'à l'infini, que nous croyons qu'il y a des jugements synthétiques. Mais si nous savions mener assez loin l'analyse, lorsque nous affirmons avec vérité un concept d'un autre, le concept affirmé est toujours intérieur et contenu dans celui dont on l'affirme, au point que – ce qui donne les fameuses thèses de Leibniz – « César a franchi le Rubicon », cette proposition qui semble éminemment être une proposition synthétique, elle implique le lien entre deux représentations: César franchit le Rubicon à telle date, en tel point de l'espace, ici-maintenant, ce qui semble être la signature même de la synthèse a posteriori. Leibniz dit que si dans le concept de César il y avait le concept «franchir le Rubicon»… est-ce que c'est par hasard que c'est le même qui est un des créateurs du calcul différentiel, c'est-à-dire d'une forme mathématique de l'analyse infinie? Évidemment non, ce n'est pas par hasard. Qu'est-ce qu'il veut dire quand il arrive à traiter le «franchir le Rubicon» comme un prédicat qui est contenu dans le concept César exactement comme «étendu» est contenu dans le concept corps? Évidemment il faudra qu'il se livre lui aussi à une espèce de gymnastique de création de concept très étonnante, parce qu’ensuite il faudra qu'il sauve la liberté, il y tient pour des raisons qui sont les siennes. Alors comment est-ce que César peut être libre alors que de tous temps est compris dans son concept «il a franchi le Rubicon ici-maintenant»? Et qu'est-ce qu'implique une telle proposition de Leibniz, à savoir: il n'y a de jugement qu'analytique? Ça implique nécessairement que l'espace et le temps, le ici-maintenant, soit réductible et soit réduit à l'ordre des concepts. La position spatio-temporelle sera traitée comme un prédicat, c'est-à-dire comme un concept attribuable.
Pourquoi est-ce que Kant tient énormément à l'hétérogénéité de l'espace et du temps d'une part, et d'autre part des catégories, i. e. des concepts a priori ? Précisément parce qu'il a besoin qu'il y ait quelque chose d'irréductible à l'ordre du concept.
La philosophie classique, c'est une longue discussion entre la proportion respective des jugements synthétiques a posteriori et les jugements analytiques a priori. La possibilité de réduire les uns aux autres, ou bien l'impossibilité de réduire…

Richard Pinhas : comment arrive-t-on à ne pas déduire le principe d'identité de l'expérience dans l'exemple «A est A» ?

Gilles Deleuze : parce que c'est la pure forme vide, A est A. A n'est pas du tout présenté comme une généralité, c'est la pure pensée, c'est le pensé quelconque. Bien plus, dès qu'il y a une identité dans l'expérience, elle n'est pas de la forme «A est A», dès qu'il y a une identité dans l'expérience, c'est une identité temporelle, c'est à dire que ce n'est pas une identité nécessaire. Donc «A est A» est dit a priori justement parce qu'il n'engage strictement aucun contenu, il va être une règle pour tout contenu possible.
Voilà que Kant arrive là dedans et tout se passe comme s'il découvrait un nouveau, type, un troisième type de jugement, et ce troisième type de jugement, il va falloir qu'il invente le concept pour le désigner, à savoir jugement synthétique a priori. Il fait là un coup de force fantastique. Pour un classique, toujours en très gros, jugement analytique a priori, ça voulait dire quelque chose, jugement synthétique a posteriori ça voulait dire quelque chose, mais jugement synthétique a priori, c'est véritablement un monstre. Donc un philosophe ne peut que fabriquer des monstres en tant que nouveaux concepts. C'est un monstre prodigieux. Qu'est-ce qu'il peut bien vouloir dire? Là je prends des exemples qui ne sont même pas dans Kant, pour être plus fidèle, pour essayer d'être plus clair que lui parce que lui a autre chose à faire.
Le triangle est blanc. Si je vous demande gaiement ce que c'est, vous me répondez que c'est un jugement synthétique a posteriori. Je vous réponds: très bien, vous avez l'U.V. Si je dis «on appelle triangle une figure formée par trois droites enfermant un espace», trois droites enfermant un espace, qu'est-ce que c'est? Je peux dire que c'est un jugement analytique. Pourquoi? Parce que je ne dis rien d'autre que «A est A». Le concept de triangle, c'est précisément trois droites enfermant un espace. C'était en gros la répartition dans le monde de la philosophie classique, c'étaient les coordonnées terminologiques de la philosophie classique. Kant arrive et dit: si je dis que le triangle a ses trois angles égaux à deux droites, proposition géométrique élémentaire, c'est quoi? C'est un jugement analytique a priori, ou un jugement synthétique a posteriori? Stupeur! Pourtant tout le monde le savait depuis longtemps, mais personne ne s'était servi de ce cas là pour faire éclater l'insuffisance de certaines catégories philosophiques, celles de jugement analytique a priori et de jugement synthétique a posteriori. Là il est en train de trouver un truc qui vraiment répond au goût de la philosophie en tant que philosophie, à savoir le truc le plus simple du monde qui crève un cadre conceptuel. En effet c'est très curieux cette histoire: le triangle a ses trois angles égaux à deux droites. C'est l'exemple même de ce qu'on appelle nécessité géométrique. C'est de l'universel et du nécessaire, et pourtant est-ce que c'est analytique?
Alors Leibniz, ça l'aurait fait rire la réflexion de Kant, c'est pour ça que c'est tellement bien la philosophie. La réponse toute faite de Leibniz, c'est: évidemment oui que le concept de triangle, si vous poussez assez loin l'analyse, c'est évident que avoir ses angles égaux à deux droites, c'est contenu dans le concept. Mais encore une fois, à quelle condition Leibniz peut dire ça? Parce qu'il a aussi inventé une discipline de mathématiques qu'il a déterminé comme étant déjà la topologie, et qui permet une espèce de réductions des déterminations spatiales à des déterminations conceptuelles. Mais à quelle condition?
Kant a commencé par marquer l'impossibilité selon lui de réduire les déterminations spatio-temporelles à des déterminations conceptuelles. En d'autres termes, il y a un ordre de l'espace et du temps qui est irréductible à l'ordre du concept. Alors Kant: je dis trois angles du triangle, c'est tellement peu contenu dans le concept du triangle que pour faire la démonstration il faut prolonger un côté du triangle, élever une parallèle au côté opposé… Déjà Leibniz dirait qu'il n'est pas d'accord, et il aurait raison parce que s'il accepte quelque chose il serait foutu, mais nous on se laisse faire, on se laisse aller dans cette espèce de tentative de Kant. Donc voilà mon concept: trois droites enfermant un espace. Pour démontrer l'égalité des trois angles à deux droites, je prends par exemple la base du triangle et je la prolonge; au point C j'élève la parallèle à AB et je montre que les trois angles du triangle sont égaux à deux droites. Kant nous dit qu'il ne faut pas exagérer, ce n'est pas le côté qui a poussé tout seul, le triangle ce n'est pas une fleur, il n'élève pas une parallèle à un de ses côtés tout seul, parallèle à un côté du triangle ça ne fait pas partie du concept de triangle, c'est donc un jugement synthétique. Or c'est un jugement synthétique d'un type très curieux, pas du tout du type «la rose est rouge» puisque c'est un jugement synthétique universel et nécessaire. Comment allez-vous expliquer un tel jugement?
Je prends un autre exemple. «La ligne droite est noire». Tout le monde comprend, pas de problème: jugement synthétique a posteriori; je le rencontre dans l'expérience, à savoir je tombe sur une ligne droite qui a été tracée en noir. Je prends la définition d'Euclide: «la ligne droite est la ligne qui est ex aequo en tous ses points», peu importe que vous preniez une autre définition. De toute manière, je dirais que c'est un jugement analytique, c'est déjà contenu dans le concept de ligne droite, c'est même l'énonciation du concept de ligne droite. Et puis voilà le monstre, je dis: «la ligne droite est le plus court chemin d'un point à un autre». Est-ce que c'est analytique, est-ce que je peux dire que le plus court chemin est contenu dans le concept «ligne droite»?
Encore une fois, Leibniz dirait: oui. Kant dit non. Pourquoi? Pour plusieurs raisons. Je donne une raison vulgaire et une raison savante. La raison vulgaire: si on regarde de très près «le plus court», est-ce que c'est un prédicat ou un attribut? C'est une question de diagnostic. Est-ce que c'est autre chose? Quand je dis «la ligne droite est le plus court chemin», c'est bizarre, est-ce que «le plus court» est un attribut? Si on arrive à démontrer que c'est un attribut, ce sera par un cheminement très complexe. Ça ne serait pas un attribut parce que «le plus court»… j'essaie de transformer: si vous voulez trouver la droite, prenez donc le plus court, ça veut dire quoi? Le plus court ça paraît être un prédicat, mais ce n'est pas un prédicat. En fait, c'est une règle de construction. C'est la règle d'après laquelle je produis dans l'expérience une ligne comme ligne droite. Vous me direz; encore faut-il savoir ce que c'est que le plus court… le plus court ce n'est pas un prédicat que j'attribue à droite, c'est une règle de construction pour construire des lignes droites dans l'expérience pour déterminer une ligne comme droite. On trouve cet exemple chez un de ses disciples, Salomon Maimon, un très très grand philosophe. Donc le plus court, c'est la règle de construction de la ligne comme droite, c'est le moyen de produire dans l'expérience une ligne comme ligne droite. Qu'est-ce que ça veut dire?
C'est évident qu'un concept ne donne pas la règle de construction de son objet. En d'autres termes, la règle de construction est hors du concept. Encore une fois Leibniz dirait «surtout pas»; s'il admettait ça, tout son système est foutu. A première vue les règles de construction c'est quelque chose de très différents des concepts parce que la règle de construction, c'est la règle d'après laquelle on produit dans l'expérience un objet conforme au concept. C'est donc forcé que ce ne soit pas contenu dans le concept, par définition. Vous dites: «le cercle est le lieu des points situés à une égale distance d'un point commun nommé centre», ça c'est le concept cercle, ça ne vous donne aucun moyen de produire un cercle. On est déjà au cœur du problème du temps. Lorsque vous dites qu'une ligne droite est une ligne ex aequo en tous ses points, vous n'avez aucun moyen de produire une ligne droite dans l'expérience, encore faut-il que vous ayez une règle pour produire une ligne comme ex aequo en tous ses points, encore faut-il que vous ayez une règle de construction pour produire une figure telle que elle soit le lieu des points situés à égale distance d'un point commun nommé centre. Et lorsque vous avez dit que le triangle, c'est trois droites enfermant un espace, vous n'avez aucun moyen de produire dans l'expérience un triangle. La règle de construction d'un triangle ce sera quelque chose de complètement autre – qui passera par le cercle, d'ailleurs. Pour produire un triangle il faudra passer par le cercle. C'est bizarre.
Qu'est-ce que veut dire Kant quand il dit que c'est du jugement synthétique? En effet vous définirez la règle de construction du triangle en disant que si vous me donnez un segment de droite – ça suppose la droite, ça va de soi, et le moyen de produire la droite –, si vous me donnez un segment de droite, si les deux points de terminaison sont pris comme centre d'un cercle, soit de même rayon, soit de rayon variable, si les deux cercles se coupent, si vous reliez les deux points de la droite aux points où les cercles se coupent, si les cercles ont un rayon égal, ce triangle sera appelé équilatéral (correction: si le rayon est égal au cercle). Là, j'ai une règle de construction.
Voyez qu'il y a quelque chose de formidable dans le jugement synthétique a priori, c'est qu’au lieu d'opérer une synthèse entre deux concepts hétérogènes, il opère une synthèse entre le concept, entre une détermination conceptuelle, le triangle ou le cercle, et un ensemble de déterminations spatio-temporelles. En effet, une règle de construction c'est une détermination spatio-temporelle. Pourquoi c'est de la synthèse? On l'a vu, la règle de construction met fondamentalement en rapport des concepts hétérogènes. D'où vient ce pouvoir de mettre en rapport des concepts hétérogènes avec nécessité, puisque la seule manière dont on se disait que les concepts hétérogènes peuvent être mis en rapport c'était la contingence de l'expérience: ah oui, cette rose est rouge. Mais quand je dis que la ligne droite est le plus court chemin, je prétends dire quelque chose de nécessaire, en ce sens d'a priori, c'est la nécessité géométrique; ça ne dépend pas de l'expérience. Ça se dit de l'expérience, je peux vérifier sur toutes les lignes droites qu'elles sont bien le plus court chemin, mais je n'en ai pas besoin. Je le sais dès la première fois, je le sais en même temps que je comprends le jugement. Je sais que c'est valable nécessairement et universellement pour toutes les lignes droites. … à savoir ce qui sous-tend le rapport nécessaire entre les concepts, c'est un ensemble de déterminations spatio-temporelles par lesquelles un des concepts est mis en relation nécessaire avec l'autre. Dès lors ma raison savante s'enchaîne. Quand je dis «la ligne droite est le plus court chemin d'un point à un autre», à première vue je ne vois pas comment ça me donne le moyen de construire une ligne droite, mais en fait, ceux qui étaient là d'autres années se souviennent que j'avais essayé de montrer quelque chose de tout à fait évident en géométrie. A savoir que «la ligne droite est le plus court chemin d'un point à un autre» ce n'est pas une proposition de style euclidien, c'est une proposition de style archimédien parce qu'elle implique une comparaison fondamentale entre deux concepts hétérogènes, celui de droite et celui de courbe. En effet, «la ligne droite est le plus court chemin d'un point à un autre» n'a de sens que dans la situation très précise de l'arc de cercle et de la corde. En d'autres termes, ça implique la méthode «la ligne droite est le plus court chemin d'un point à un autre» c'est ce qu'on appellerait une proposition déjà pré-différentielle renvoyant à un calcul prédifférentiel qui est le calcul fameux d'Archimède, le calcul d'exhaustion par lequel on fait tendre une ligne brisée vers une ligne courbe, à l'infini, ça implique le passage à la limite. C'est pour ça que la ligne droite est le plus court chemin d'un point à un autre bien que ne soit pas dit explicitement la courbe, le concept de courbe n'est pas nommé. Ce jugement est dénué de tout sens si on ne voit pas que s'opère une synthèse de deux concepts, la droite et la courbe, que c'est uniquement dans la comparaison de la droite et de la courbe dans la situation archimédienne très précise que s'énonce ce jugement, avec le passage à la limite et l'exhaustion, et que la réponse de Kant à ce niveau c'est: vous voyez bien que ce n'est pas un jugement analytique parce que deux concepts hétérogènes sont… tout comme dans mon exemple des triangles, encore une fois pour démontrer l'égalité des trois angles à deux droites, il faut faire monter la parallèle, or la parallèle c'est un concept extérieur au triangle. Qu'est-ce qui fait la soudure de ces concepts hétérogènes dans le jugement synthétique a priori? Uniquement une opération qui consiste en ceci: être une détermination de l'espace et du temps.
C'est la détermination de l'espace et du temps, par exemple dans la figure de l'arc de cercle et de la corde, dans l'élévation de la parallèle à un côté du triangle, c'est cette détermination spatio-temporelle qui va rendre possible le lien nécessaire entre des concepts qui pourtant ne sont pas contenus l'un dans l'autre, à savoir vous aurez à ce moment-là le jugement synthétique a priori.
Quelles sont les raisons pour lesquelles Kant nous dit que l'espace et le temps ne sont pas réductibles aux catégories ? A savoir il y a deux sortes de formes a priori: l'espace et le temps d'une part, les catégories d'autre part, ou si vous voulez, l'espace et le temps est irréductible à l'ordre des concepts. Il donne beaucoup de raisons, mais il nous convie à une expérience au moins de pensée, comme c'est la plus simple, c'est elle que je vous donne. Il dit, vous voyez deux mains, c'est le paradoxe des objets symétriques non superposables. Vous voyez deux mains, non seulement vous voyez deux mains, mais vous pouvez penser deux mains. Supposons que, en réalité, il n'y a jamais deux mains, il y a toujours de petites différences, empreintes, traits, du point de vue de la pensée ça n'a aucun intérêt, on peut toujours dire qu'il n'y a pas deux choses semblables. Mais vous pouvez toujours penser, vous pouvez toujours vous représenter deux mains absolument identiques. Remarquez que si je fais parler Leibniz en voix off, il dirait: pas du tout, on croit le penser, mais on ne peut pas le penser, c'est qu'on a arrêté le concept. Mais nous acceptons l'espèce de pari de Kant.
Donc vous pouvez penser deux mains strictement identiques dans le concept. Et si loin que vous alliez dans le concept, dans les caractères du concept, eh bien vous pouvez penser aussi que telle ligne est dans l'autre. Et pourtant… Leibniz dirait: peut-être bien, mais si vous faites ça vous vous apercevrez qu'il n'y en a plus qu'une. Kant dit que là il y a quelque chose d'irréductible. Kant dit qu'il peut penser deux mains strictement identiques et que pourtant elles restent deux. Elles sont strictement identiques quant à leur concept; chaque caractère de l'une a son identique dans l'autre. Et pourtant elles sont deux. Et pourquoi elles sont deux? L'une est la droite, l'autre est la gauche. Ou bien l'une est avant, l'autre est après, ou derrière. En quoi est-ce que ça se pense, dans les deux mains strictement identiques, que l'une est à droite et que l'autre est à gauche? Vous savez qu'elles ont beau être pensées comme identiques quant à chacun de leur caractère, elles ne sont pas superposables. Elles sont absolument symétriques dans leurs moindres détails et pourtant elles ne sont pas superposables. Kant dira que c'est ça la finitude.
C'est ça l'irréductibilité de l'espace et du temps. La droite, la gauche. Ici-maintenant. Avant, après. Vous pouvez concevoir deux objets dont le concept est strictement le même, les objets restent deux, pour cette raison même que l'un est ici et l'autre là. L'un est à droite, l'autre est à gauche, l'un est avant, l'autre est après. Il y a un ordre spatio-temporel irréductible à l'ordre conceptuel.
Mais Kant n'invoque pas cette raison là. Il donne aussi cet exemple célèbre: deux trièdres semblables, opposés par le sommet, on ne peut pas les faire coïncider. Pourquoi est-ce que vous ne pouvez pas les faire coïncider? Parce que faire coïncider ou superposer deux figures ça implique une rotation, une rotation dans une dimension supplémentaire au nombre de dimensions de la figure. Quand vous avez deux triangles opposés par le sommet, vous pouvez les faire coïncider, c'est à dire rabattre l'un sur l'autre en faisant subir à l'un des triangles une rotation dans la troisième dimension. Vous disposez alors d'une dimension supplémentaire aux dimensions de la figure. Quand vous arrivez à des volumes, i. e des figures à trois dimensions, comme les deux mains ou les trièdres opposés par le sommet, vous pourriez facilement les faire se superposer, les deux mains si vous aviez une quatrième dimension de l'espace. Vous opéreriez la rotation dans la quatrième dimension. La finitude c'est le fait que l'espace irréductiblement a trois dimensions et pas n dimensions, ou que le temps a une dimension. On pourra toujours nous dire qu'il y a des théories où il y a des espaces à n dimensions, ou bien où le temps a plusieurs dimensions. Je crois qu'une telle chose a peu d'intérêt parce que l'idée d'espace à n dimensions implique déjà un système de problèmes et de concepts qui n'a rien à voir avec le système de concepts et de problèmes de Kant. Pourquoi est-ce que l'espace et le temps sont-ils irréductibles à l'ordre du concept? C'est que les déterminations spatio-temporelles ne se laissent pas réduire à des déterminations conceptuelles, dans la mesure où si loin que vous pouvez pousser l'identité de deux concepts, la chose correspondante ou les choses correspondantes pourront toujours se distinguer non seulement par des caractères contingents a posteriori, mais par leur situation dans l'espace et dans le temps. Par leur position dans l'espace et dans le temps. La position spatio-temporelle n'est pas une propriété du concept.
D'où nous sommes confirmés dans le principe suivant que la synthèse a priori se fait moins entre deux concepts, elle ne se fait entre deux concepts parce que d'abord, parce qu'elle se fait entre le concept en général d'une part, et la détermination spatio-temporelle d'autre part. La véritable synthèse a priori n'est pas entre concepts comme la synthèse empirique, la véritable synthèse a priori se fait du concept à la détermination spatio-temporelle, et inversement. C'est pour ça qu'il peut y avoir des synthèses a priori d'un concept à un autre concept, c'est parce que l'espace et le temps ont tissé tout un réseau de déterminations qui peuvent faire qu'un concept et qu'un autre concept, si différents qu'ils soient, du moment qu'il y a des règles de production, entrent dans des rapports nécessaires l'un avec l'autre. Donc l'espace et le temps vont acquérir un pouvoir constituant qui va être le pouvoir constituant de toute l'expérience possible.
Pour mieux marquer la différence entre l'ordre du concept et l'ordre spatio-temporel, je reprends les mots que j'ai dits tout à l'heure. L'espace et le temps ce sont les formes de l'apparition, ou les formes de la présentation de ce qui apparaît. En effet, ça se comprend parce que l'espace et le temps est bien une forme d'apparition, mais elle n'a pas une unité spécifique en elle. Ce qui apparaît, c'est toujours du divers, l'apparition est toujours apparition d'une diversité: la rose rouge, une odeur, une couleur, etc. Donc ce qui apparaît, par nature, est divers. L'espace et le temps sont des formes de perception, mais vous remarquerez que l'espace et le temps eux-mêmes ont une diversité, à savoir c'est la diversité des «ici» dans l'espace, tout point de l'espace étant un «ici» possible, et la diversité des moments pour le temps tout point du temps étant un moment possible.
Il faudra donc distinguer la diversité de ce qui apparaît dans l'espace et dans le temps et la diversité de l'espace et du temps eux-mêmes. La première diversité de ce qui apparaît dans l'espace et dans le temps sera dite diversité empirique, la seconde diversité, la diversité de l'espace lui-même ou du temps lui-même sera diversité a priori. Diversité de l'espace. Diversité du temps. La diversité a priori de l'espace et du temps constitue les formes de la présentation. Au contraire, la diversité empirique appartient à ce qui apparaît.
Les catégories ou les concepts, dont on vient de voir qu'ils sont d'un autre ordre que la détermination espace-temps, ils ont une unité, c'est même la fonction du concept, c'est unifier une diversité. Si bien que vous sentez bien qu'il faudra, d'une certaine manière, que le concept porte sur l'espace et le temps. L'espace et le temps comme formes d'apparition de ce qui apparaît c'est ce que Kant appelle « formes de l'intuition ». L'intuition, c'est précisément la présentation, l'intuition c'est l'immédiat. Les phénomènes sont immédiatement dans l'espace et dans le temps, c'est à dire apparaissent immédiatement dans l'espace et dans le temps. L'espace et le temps sont les formes de l'immédiateté. Le concept c'est toujours ce qu'on appelle une médiation. Le concept renvoie au concept et il opère une unification. C'est en ce sens que ce n'est pas simplement une forme de présentation de ce qui apparaît, ce sera une forme de la représentation de ce qui apparaît. Le préfixe re-indique ici l'activité du concept par opposition au caractère immédiat, ou à la passivité de l'espace et du temps qui sont donnés ou qui sont la forme de ce qui est donné.
L'espace et le temps sont, dit Kant, la forme de notre réceptivité, tandis que le concept est la forme de notre spontanéité ou de notre activité.
Qu'est-ce que Kant amène de prodigieusement nouveau dans l'histoire du temps? Une fois dit que les déterminations de l'espace et du temps sont irréductibles aux déterminations conceptuelles, il n'y aurait pas de connaissance possible si pourtant et malgré tout on n'arrivait pas à faire correspondre les déterminations spatio-temporelles et les déterminations conceptuelles, et c'est ça l'espèce de miracle de la connaissance. Et Kant a construit tout son système de nouveaux concepts pour arriver à ça.
C'est un philosophe austère, un philosophe sévère, il emploie toute sorte de mots compliqués mais ce n'est jamais des mots pour faire de l'effet, ce n'est pas un lyrique. Je vous renvoie à ses secrétaires qui ont écrit des choses sur sa vie : il a une vie très calme, très rangée…
Thomas de Quincey a traduit et un peu arrangé, embelli les relations des secrétaires de Kant, c'est Les derniers jours d'Emmanuel Kant. C'est un texte splendide.
Il y a une formule, une première formule sur le temps qui me paraît être une des plus belles choses qu'on ait dit sur le temps, c'est Hamlet qui la dit. La formule convient tellement: «le temps est hors de ses gonds.» C'est beau! C'est une très belle formule si on la comprend. Les gonds, c'est quoi? Les gonds c'est, à la lettre, le pivot. Le pivot, c'est ce autour de quoi la porte pivote. Mais la porte… il faudrait concevoir une porte tambour et la porte tambour, c'est la porte universelle. La porte du monde, c'est une porte tambour. La porte du monde pivote et elle passe par des points privilégiés qui sont bien connus: c'est ce qu'on appelle les point cardinaux. Nord, Est, Sud, Ouest. Le gond c'est ce qui fait pivoter la porte de telle manière qu'elle passe et repasse par des repères privilégiés nommés points cardinaux. Cardinal, ça vient de cardo; cardo, c'est précisément le pivot, le pivot autour de quoi tourne la sphère des corps célestes, et qui les fait passer et repasser par les points dits cardinaux, et on repère les repassages: ah, l'astre, le revoilà, c'est l'heure de conduire mes brebis!
«Le temps sort de ses gonds», le temps n'est plus enroulé de telle manière qu'il soit subordonné à la mesure de quelque chose d'autre que lui – qui serait par exemple le mouvement astronomique. Le temps a cessé d'être le nombre de la nature, le temps a cessé d'être le nombre du mouvement périodique. Tout se passe comme si, lui qui était enroulé de manière à mesurer le passage des corps célestes, il se déroule comme une espèce de serpent, il se secoue de toute subordination à un mouvement ou à une nature, il devient temps en lui-même pour lui-même, il devient temps vide et pur. Il ne mesure plus rien. Le temps a pris sa propre démesure. Il sort de ses gonds, c'est-à-dire de sa subordination à la nature; c'est la nature qui va lui être subordonnée.
Je peux dire, en allant vite, que toute la philosophie antique a maintenu une subordination du temps à la nature, même sous des formes très complexes; que la philosophie classique, si compliquée qu'aient été ses conceptions du temps, n'a jamais remis en question ce principe très très général. C'est la fameuse définition: «le temps, c'est le nombre du mouvement.» Avec Kant c'est une nouveauté indescriptible. C'est la première fois que le temps se libère, se détend, cesse d'être un temps cosmologique ou psychologique, peu importe que ce soit le monde ou l'âme, pour devenir un tempe formel, une forme pure déployée, et ça va être pour la pensée moderne un phénomène d'une importance extrême. Ça ce sera le premier grand renversement kantien dans la théorie du temps.
Donc, je prends à la lettre la formule d'Hamlet pour l'appliquer à Kant: «le temps sort de ses gonds.» C'est avec Kant, du point de vue du concept de temps, qu’on peut dire effectivement que le temps sort de ses gonds, c'est-à-dire a cessé d'être subordonné à la mesure du mouvement, et au contraire le mouvement va se subordonner à lui complètement. Et le temps va être cette espèce de forme à la fois pure, et cette espèce d'acte par lequel le monde se vide, devient un désert. C'est pour ça qu'un des meilleurs disciples de Kant – ce ne sera pas un philosophe, ce n'est jamais chez les philosophes qu'il faut chercher ceux qui ont compris les philosophes –, c'est Hölderlin, et Hölderlin en se réclamant de Kant, contre les philosophes kantiens, qui a compris en développant une théorie du temps qui est précisément la forme vide et pure sous laquelle Œdipe erre.
La prochaine fois, je voudrais voir ce que veut dire, appliquée à Kant, la formule «le temps sort de ses gonds». Ça veut dire vraiment quelque chose de littéral.
La seconde formule que je voudrais développer n'appartient vraiment qu'à Kant et elle fait partie des derniers textes, les plus obscurs. Kant, à la fin de sa vie, rédige un livre qui paraîtra après sa mort. Il commence l'ébauche d'un truc qui s'appellera Opus Postunum. Et l'Opus Postunum c'est très étrange parce qu'il mélange tout. Il y a des notes de blanchisserie, il y a des petites impressions de vie quotidienne, et puis il y a une page splendide. Dans les textes de la fin apparaît de plus en plus l'idée que le temps, c'est comme la forme d'une auto-affection. C'est la forme sous laquelle le sujet s'affecte lui-même. S’il y a quelque chose de mystérieux, c'est bien ça. Ce serait clair pour l'espace, mais il le dit aussi pour le temps. Voyez comment se fait la répartition: l'espace c'est la forme sous laquelle un quelque chose d'extérieur m'affecte et le temps c'est la forme sous laquelle je m'affecte moi-même. C'est encore plus mystérieux que «le temps sort de ses gonds».
C'est les trois oracles de Kant: une première fois déguisé en Hamlet, le temps sort de ses gonds ; une deuxième fois déguisé en lui-même, il dit que le temps est la forme de l'auto-affection, la forme sous laquelle je m'affecte moi-même. Or pourquoi est-ce qu'il dit ça? Il ne pouvait pas faire autrement. Si vous avez suivi le premier point, le temps est sorti de ses gonds, il ne mesure plus un mouvement, il n'est plus subordonné à la nature. Déjà, au niveau le plus grossier, c'est très nouveau. Ce qu'il y a de nouveau chez quelqu'un il faut déjà le saisir au niveau le plus gros. Jusqu'à lui, qu'est-ce qu'on dit, très grossièrement ? Avec Leibniz, pas de problème : pour lui le temps c'est l'ordre des successions possibles, l'espace c'est l'ordre des coexistences possibles. Kant ne veut pas de ça et il ne peut plus l'accepter. Toute la manière dont il a posé le problème fait qu'il ne peut pas: il est évident que définir le temps par l'ordre des successions possibles ça implique, à première vue, une subordination du temps à un contenu qui le mesure, un contenu auquel il est subordonné. Il faut bien que le temps soit subordonné à ce qui se succède. Donc, dès qu'il a conçu le temps formel, la forme pure du temps détachée d'un mouvement à mesurer, dès qu'il a décourbé le temps, dès qu'il l'a lâché comme un ressort, il ne peut plus le définir par un ordre des successions. Il est d'autant plus fort que définir le temps comme succession ça veut d'autant rien dire que – bien sûr la succession, c'est temporel, mais ce n'est qu'un mode du temps car la coexistence ou la simultanéité par laquelle on prétend définir l'espace, c'est un autre mode du temps, ce n'est pas de l'espace. C'est une très mauvaise répartition. L'espace ne peut pas se définir par l'ordre des coexistences puisque coexistence, c'est une notion qui ne peut se comprendre que par rapport au temps – ça veut dire en même temps. Le temps ne peut pas se définir par la succession parce que la succession, ce n'est qu'un mode du temps, la coexistence est elle-même un autre mode du temps. Vous voyez qu'il s'est arrangé pour rendre la distribution simple espace-coexistence, et temps-succession. Le temps, nous dira-t-il, a trois modes: la durée ou permanence, la coexistence et la succession. Or on ne peut définir le temps par aucun des trois puisqu'on ne peut pas définir une chose par ses modes. On ne peut pas davantage définir l'espace comme l'ordre des coexistences puisque la coexistence c'est un mode du temps. Là il est très très fort.
Il va dire – et je voudrais que vous admiriez l'espèce de simplicité – : vous allez définir l'espace comme simplement la forme – et surtout pas l'ordre puisque l'ordre renvoie encore à une mesure de quelque chose à mesurer dans le temps –, comme la pure forme — de quoi? L'espace c'est